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Quantifying Dynamic Factors Contributing
to Dilemma Zone at High-Speed
Signalized Intersections

Heng Weil, Zhixia Li, Ping Yi, and Kevin R. Duemmel

The issue of the dynamic yellow light dilemma zone (DZ) has been raised
by researchers for many years. However, quantitative study of the inher-
ent factors contributing to the dynamic DZ remains an issue, perhaps

because of the lack of effective means for collecting the trajectory data.

This paper presents an analysis of the dynamic characteristics of major
contributing factors for Type I DZ and the option zone on the basis of
vehicle trajectory data during yellow intervals. The qualified trajectory
data of 1,445 vehicles were extracted from 46-h high-resolution videos
shot at four high-speed signalized intersections in Ohio with the use of
the cost-effective software VEVID, developed and upgraded by the first
two authors. The statistical analysis of the obtained trajectory data quan-
titatively revealed the dynamic nature of major DZ contributing factors.
Results indicated that the minimum perception-reaction time of drivers
was greatly influenced by speed and could be modeled as a function of
the speed. The maximum deceleration rate for stopping and the maxi-
mum acceleration rate for running a yellow light were greatly dependent
on speed and the 85th percentile speed of the intersection approach. The
rates could be expressed as a function of those two variables. On the basis
of the new findings, the traditional Type I DZ model was greatly modi-
fied and improved. The new model provides a theoretical base for updat-
ing the existing DZ tables with the identified dynamic characteristics of
the contributing factors.

At high-speed signalized intersections (1.e., posted speed limit is
40 mph or higher), the yellow light dilemma is widely known as
a major cause of rear-end and right-angle crashes. The so-called
dilemma literally reflects the drivers’ indecisiveness when making
stop or go decisions in response to yellow indications. However in
practice, the dilemma can be physically characterized by a zone in
advance of the intersection, which is known as the dilemma zone
(DZ). Vehicles in the DZ at the onset of the yellow indication cannot
either clear the intersection during the yellow interval or safely stop
before the stop line. This concept was initially proposed by Gazis
et al. (/) and is known by researchers as the Type | DZ (2-6).
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Another definition of DZ, which was proposed by Zegeer in 1977, is
“the roadway segment where more than 10% and less than 90% of
the drivers would choose to stop.” (7). This definition has been
further named the Type 11 DZ or the indecision zone (8—-14).

Urbanik and Koonce conducted a comprehensive literature review
to clarity the confusion between the two types of DZs (/5). They con-
cluded that the Type | DZ could be eliminated by a prolonged yellow
interval, whereas the Type II DZ can be minimized only by applying
the detection-based DZ protection systems (/2—/4). However, previ-
ous studies have also proved that a longer yellow interval could elim-
inate only the Type I DZ, but would produce a longer option zone
(16, 17), which is still a safety concern. The option zone is closely
related to the Type | DZ. It is defined as the zone in which vehicles at
the onset of the yellow indication can either clear the intersection dur-
ing the yellow time or safely stop before the stop line. Drivers in the
option zone will also experience indecisiveness (dilemma) when
making stop and go decisions. which makes them still highly exposed
to rear-end or right-angle crashes.

The mathematical model representing the Type I DZ and the option
zone is called the Gazis, Herman, and Maradudin (GHM) model (/8).
According to the GHM model, the location of the Type I DZ and the
option zone is determined by the minimum stopping distance (X,) and
the maximum yellow light running distance (X)), given a particular
length of yellow interval. When X, is greater than X, the Type IDZ
forms. When X, is greater than X, the option zone exists. X, and X,
can be computed by using the following contributing factors: speed
of vehicle (V;), minimum perception—reaction time (PRT) for stop-
ping (&s,.,), maximum deceleration rate for stopping (ds,,), minimum
PRT for running (8g,,), maximum acceleration rate (¢g,,) for running,
duration of yellow interval (7). intersection width (W), and vehicle
length (L).

In most engineering practice, the contributing factors such as dgyy,
dgyy. and By, are assumed to have constant values. For example, in
ITE’s Traffic Engineering Handbook, s, dgyy, and 8, are assumed
to be constants, 10 f/s*, 0 ft/s*, and 1 s, respectively (/9). FHWA sug-
gests in the Traffic Detector Handbook that ds,,, could alternatively be
a constant value of 16 ft/s”* in some cases (20). AASHTO suggests
11.2 ft/s%, 0 fv/s>, and 1.5s for s0ps GRuns AN B, TESpectively (21). At
most times, dpg,, 1s assumed to be 0 {t/s*. However, in the GHM model,
A,y Was originally considered as a linear function of speed with
a negative slope (/); this function is also reflected in FHWA's Traffic
Detector Handbook (20).

The research of Liu et al. started to consider nonconstant con-
tributing factors for the Type 1 DZ and option zone (3). In their
study. they classified drivers into three categories and used different
values of contributing factors for different categories of drivers
when the DZs were computed.
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The previous studies conducted by the authorshaveraised thedis-
cussion that values of the contributing factors of Type | DZ (i.e.,
850p Brun, Os10p @ Sryn) Might be dynamic with different approach
speeds, and the results have al so proved that dynamic (22, 23). How-
ever, whether these contributing factors are related only to speed or
are also dynamic with other potential variables, such astheduration
of the yellow time and the 85th percentile speed of the intersection
approach, still needsto be further investigated. Therefore, this paper
is dedicated to analyzing the dynamic characteristics of the major
contributing factors for Type | DZ and option zone and their corre-
lation with speed, duration of yellow time, and 85th percentile speed
of the intersection approach.

DYNAMIC DZ MODEL

Under the assumption that &sop, &guns O siops 8N Srun @€ functions of
speed (Vy), duration of yellow time (t) and 85th percentile speed
(Vesth), the following dynamic DZ model, which modifies the origi-
nal GHM model by changing the constant factor valuesinto dynamic
ones, istentatively proposed.

N V2
X (V,, T, V, =V,0...(V,, T, V. _— 1
c( o 85th) 0 stop( 0 T 85th)+ Z‘agop(vo,’c,v%m) @
1.
Xo (Vo’ TvVasrh) =VoT+ Ea‘Run (Vov T’V85th)
~ 2
- |:T - 8Run (Vov T, Vs ):| 2

where

V, = vehicle' s approaching speed (ft/s),

X(Vo, T, Vgs) = critical (minimum) stopping distance from stop
lineat speed V, and under yellow interval T and
85th percentile speed Vg, (ft),

Xo(Vo, T, Vesin) = maximum yellow light running distance from
stop line at speed V, and under yellow interval

R T and 85th percentile speed Vg, (ft),

Ss0p(Vor T, Vi) = minimum PRT for stopping at speed V, and
under yellow interval T and 85th percentile
speed Vsin (9),

8si0p(Vo, T, Vesin) = maximum deceleration rate for stopping at
speed V, and under yellow interval t and
85th percentile speed Vs, (ft/S%),
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SRun(vo, T, Vesin) = minimum PRT for yellow light running at
speed V, and under yellow interval t and
85th percentile speed Vgsih (S), and

8run(Vo, T, Vesin) = maximum acceleration rate for yellow light
running at speed V, and under yellow interval T
and 85th percentile speed Vs, (ft/S?).

Inthecaseinwhich X. > X,, the Typel DZ isformed, and the road-
way segment between X; and X, isthe Type | DZ. However, in the
case in which X < Xy, the Type| DZ is eliminated, and the roadway
segment between X, and X, is the option zone.

The selection of parameters (i.e., Vo, T, Vesi) in the models of &gqp
&runs Osiop: aNA Oy istemporary. Thefinal modelswill include only
the significant parameters based on the final results from the statis-
tical analyses. Also, the intersection width (W) and vehicle length
(L) are removed from the original GHM model. The reason is that
on the basis of field observations, when drivers perceive the yellow
indication, they do not consider whether they could clear the inter-
section completely during the yellow interval. Actualy, their con-
cern iswhether they could pass the stop line before the onset of the
red indication.

DATA COLLECTION

Four approaches of high-speed signalized intersections in Ohio
are selected as the study sites and are summarized in Table 1. All
the study sites are located in suburban areas. No DZ protection is
implemented and no advance detectors are installed. At each study
site, ahigh-definition digital video camerawas placed on the top of
avan parked on the shoulder of the intersection approach to shoot
vehicle maneuvers during the yellow intervals. An attempt was
made to place the camera far enough to cover all possible yellow
light running distances. In total, 46-h video data were collected at
thefour study sites, covering different periods of theday. Thevideo
wasthen converted to AV format with aframerate of 30 frames per
second and aresolution of 1,280 pixels x 720 pixels.

The video-capture-based software VEV 1D was used to obtain time-
based trgjectory data of vehicles during the yellow intervals (24).
Vehiclestargeted for trgjectory dataextractionincludeall yellow light
running vehicles, al red light running vehicles, and vehiclesthat are
thefirst stopped (first-to-stop) vehiclesin their lanesduring the yellow
intervals. Only vehiclesthat go straight were targeted for data extrac-
tion. Although two of the study sites have a shared through and right-
turn lane, only those yellow intervals in which no right-turn vehicles

TABLE 1 Conditions of Study Sites and Data Collection
Condition OH-4 at Boymel OH-14 at OH-44 OH-4 at Seward US-50 at OH-128
Posted speed limit 50 mph 50 mph 50 mph 55 mph
85th percentile speed 47.4 mph 51.7 mph 44.5 mph 58.3 mph
Yellow time 40s 40s 45s 50s
Through lanes 2 dedicated 1 dedicated 2 dedicated 1 dedicated
1 shared 1 shared
Distance covered by camera 420 ft 460 ft 420 ft 480 ft
First-to-stop samples 150 92 158 74
Run-yellow samples 253 62 403 178
Run-red samples 25 22 18 10
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areinvolved aretargeted for data extraction. The extracted trgjectory
datainclude the following items:

e Vehicle' s speed at the onset of yellow indication,

e Vehicle's distance from stop line at the onset of yellow
indication,

e Timeused by arunning vehicleto reach the stop line cal culated
from the onset of yellow, and

¢ |D of the video frame in which the brake light of a stopped
vehicleisilluminated.

The details about how to extract the trgjectory data can be found
inpreviousstudies (22, 23). Finaly, trajectory dataof 1,445 vehicles
(speed > 30 mph) were extracted and collected. Table 1 providesthe
detailed information about thefour study sitesand the number of data
samples at each study site.

InTablel, therows*"first-to-stop samples,” “run-yellow samples,”
and “run-red samples’ list thetotal number of observed vehiclesthat
first stopped in their lane during the yellow interval, ran yellow,
and ran red, respectively. According to Table 1, the posted speed
limit is either 50 mph or 55 mph at the four study sites. However,
various 85th percentile speedswere found, ranging from 47.4 mph
to 58.3 mph. Theyellow timeisalso various at the four study sites,
including 4.0 s, 4.5 s, and 5.0 s. This variety of data provides ideal
samples for analyzing the effect of yellow time and 85th percentile
speed on the DZ contributing factors.

ANALYSIS OF MINIMUM PRT AND
MAXIMUM DECELERATION RATE

Preparation of Data Samples

Firgt, the PRT and the deceleration rate of each sample vehicle need
to be derived and calculated from the trgjectory data. The driver's
PRT can be determined by thetimeinterval between the onset of yel-
low indication and the instant in which the brake light of the target
vehicleisilluminated. Considering that all recorded stopped vehicles
are the first-to-stop vehicles in the lane and stop at the stop line, the
deceleration rate is therefore cal culated with the following equation:

M
2(X,-V, -8

sen)

Agop = (©)

where

agop = deceleration rate (ft/s),

V, = yellow-onset speed (ft/s),

X, = yellow-onset distance from stop line (ft), and
ds0p = driver’s PRT for stopping (s).

Second, the observed yellow-onset trajectories of al qualified first-
to-stop vehicles at the four study sites are plotted on four coordinate
systems, respectively, asillustrated by Figures 1a, 1b, 1c, and 1d. The
vertical axisrepresentsthe vehicles speed at the onset of yellow; the
horizontal axis representsthe vehicles' distance from the stop line at
the onset of yellow.

Third, vehicles that have the shortest stopping distance at differ-
ent speeds areidentified at all four study sites, which arethe circled
first-to-stop vehicles shown in Figures 1a, 1b, 1c, and 1d. These
identified vehicles constitute the samplefor the analysis. The selec-
tion of these vehicles is in accordance with the definition of X,
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which is the minimum stopping distance that a stopped vehicle could
achieve at a specific speed. Therefore, the PRT and deceleration rate
of the selected samplesreflect theminimum PRT (8 g,,) and maximum
deceleration rates (8gqp), respectively.

Minimum PRT Versus Speed and Other Factors

Linear regression analyses and statistical tests are conducted to test
whether speed, duration of yellow time, and 85th percentile speed
are significant factors influencing the driver’s minimum PRT. The
samplesinvolvedintheanaysisareall theidentified closest stopped
vehicles as circled in Figures 1a, 1b, 1c, and 1d. Table 2 shows a
summary of the results of the statistical analysis.

Thetwo linear regression analysesin Table 2 aim to test whether
the 85th percentile speed or duration of yellow time hasasignificant
effect onthe minimum PRT. The dependent variablefor both analy-
sesisminimum PRT. The independent variablesfor Analysis 1 are
yellow-onset speed and 85th percentile speed; theindependent vari-
ablesfor Analysis 2 are yellow-onset speed and duration of yellow
time. T-testsare performed to test the significancelevel (p-value) of
theindependent variablesin both analyses. The results summarized
in Table 2 indicate that for both models, yellow-onset speed isasig-
nificant factor affecting the minimum driver’s PRT at the signifi-
cance level of .007, or confidence level of 99.3%. And the negative
slopeindicatesthat the higher the speed is, the shorter the minimum
PRT will be. However, the p-values for the 85th percentile speed
and the duration of yellow time are .369 and .349, respectively.
Those valuesindicate that the 85th percentile speed and the duration
of yellow time are not statistically significant factors that influence
the driver’sminimum PRT.

Therefore, it can be concluded that the yellow-onset speed isthe
only significant factor that affectsthedriver’ sminimum PRT inthis
study scope. A model fit test isthen performed to determine the best-
fit model describing the minimum PRT. The samplesinvolved inthe
model fit test include all identified closest stopped vehicles. Table 3
shows asummary of the result of the test.

In Table 3 each candidate regression mode! hasan R and ap-value
obtained from the F test. A higher RZ impliesthat the minimum PRT
is better explained by the regression model; alower p-valueimplies
amore significant effect on the minimum PRT by the yellow-onset
speed. Among all candidate models, theinverseregression model has
therelatively highest R? of .113 and thelowest p-value of .006. Those
values reveal that the inverse model is the best-fit model that
describesthe relationship between the minimum PRT and the yellow-
onset speed. Although the R? is very low, the yellow-onset speed is
significant at the 99.4% confidence level. Therefore, on the basis of
theresult of theinverse regression summarized in Table 3, minimum
PRT (8s0p) can then be modeled by afunction of yellow onset speed
(Vo), which is presented by the following equation:

Baep(Vy) = 0,445+ 21478

4

0

Maximum Deceleration Rate Versus
Speed and Other Factors

First, linear regression analyses are performed to preliminarily
look at the relationship between the maximum deceleration rate
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TABLE 2 Statistical Test Results for Potential Variables Affecting
Different DZ Contributing Factors

Linear Regression Analysis B SE t-Statistic  p-Value
Potential Variables Impacting Minimum PRT*#
Analysis1
Constant 1.246 .302 4122 .000
Y ellow-onset speed (mph) -.013 .005 -2.797 .007
85th percentile speed (mph) .006 .006 .905 .369
Analysis 2
Constant 1174 .356 3.303 .002
Y ellow-onset speed (mph) -.012 .004 —2.798 .007
Duration of yellow time (s) .073 .077 .944 .349
Potential Variables Impacting Maximum Deceleration Rate”
Analysis 1
Constant 8997 1400 6.425 .000
Y ellow-onset speed (mph) .249 .022 11.262 .000
85th percentile speed (mph)  —.165 .030 -5.535 .000
Analysis2
Constant 5617 1972 2.849 .006
Y ellow-onset speed (mph) .206 .025 8.378 .000
Duration of yellow time () —.663 427 -1.552 126
Potential Variables Impacting Maximum Acceleration Rate®
Analysis 1
Constant 7769 1771 4.388 .000
Y ellow-onset speed (mph) -.418 .030 -13.889 .000
85th percentile speed (mph) 275 .039 7.036 .000
Analysis2
Constant 9117 2474 3.686 .000
Y ellow-onset speed (mph) —-.352 .033  -10.653 .000
Duration of yellow time (s) 2.164 .b52 3.924 .000

NortEe: SE = standard error.

“Dependent variable = minimum PRT; N = 66.

Dependent variable = maximum decel eration rate; N = 66.
‘Dependent variable = maximum acceleration rate; N = 64.

and the yellow-onset speed. Figure 2 showsresults of theregression
analysis.

According to Figures 2a, 2b, 2c, and 2d, al linear models have a
moderateto high R? and a positive slope, which meansthe maximum
deceleration rate increases as speed increases.

The comparison of the linear regression modelsrepresenting dif-
ferent study sites is shown in Figure 2e. The four regression lines
are sequenced down to up in adecreasing order for 85th percentile
speed, revealing that under the same speed condition, the higher the
85th percentile speed of the approach is, the smaller the maximum
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deceleration rate will be. This finding should be a result of drivers
tendency to be more conservative at lower speed intersectionsthan at
higher speed intersections. Asfor the duration of yellow time, it does
not seem to be a significant factor affecting the maximum decelera-
tion rate. The reason is that the four regression lines are sequenced
downto upin neither adecreasing order nor anincreasing order of the
duration of yellow time. These findings are supported by results of
the statistical tests summarized in Table 2.

The purpose of the two analyses in the deceleration rate section
of Table 2 are to test whether the 85th percentile speed or the dura-
tion of yellow time has a significant effect on the maximum decel-
eration rate. Results indicate that for both analyses, yellow-onset
speed isasignificant factor affecting the maximum deceleration rate
at the significance level of .000, or confidence level of 99.9%. The
p-value for the 85th percentile speed is also .000, which indicates
that the 85th percentile speed is a statistically significant factor
affecting the maximum deceleration rate at the confidence level of
99.9%. And the negative coefficient of the 85th percentile speed has
proved that the maximum deceleration rate decreases as the 85th
percentile speed increases. However, the p-value for the duration of
yellow timeis.126, which ishigher than .05. It reveal sthat the dura-
tion of yellow timeisnot statistically significant enough to affect the
maximum decel eration rate.

Therefore, it can be concluded that the yellow-onset speed and the
85th percentile speed are two significant factors affecting the maxi-
mum deceleration rate. Model fit analyses are then conducted to iden-
tify the best-fit model that describes the maximum decel eration rate.
Two stepsarefollowed to determine the best-fit rel ationship between
each of the two independent variables (i.e., yellow-onset speed and
85th percentile speed) and the maximum decel eration rate.

First, a set of model fit tests is performed with the maximum
deceleration rate as the dependent variable and the yellow-onset
speed as the independent variable. For each study site, thereis a
particular model fit test. Samples involved in each model fit test
include all theidentified most closely stopped vehicles at this par-
ticular study site. Table 4 shows a summary of the results of the
model fit tests.

In Table 4, each candidate regression model hasan R?, an F value,
and a p-value obtained from the F test. A higher R? implies that
the maximum decel eration rate s better explained by theregression
model, whereas ahigher F valueimpliesamore significant effect on
the maximum decel eration rate by the yellow-onset speed. It can be
identified that the S regression model has the highest R? value and
the highest F value at three of the four study sites. It isrevealed that
the S model best describes the relationship between the maximum

TABLE 3 Best Model Fit Analyses for Different DZ Contributing Factors: Analysis of Best-Fit

Relationship Between Minimum PRT and Speed

Model Summary Parameter Estimate

Candidate Regression

Model* R F Sample Size p-Vaue Constant Coefficient
Linear .100 7.109 66 .010 1.456 -.012
Logarithmic 107 7.654 66 .007 2.854 -.506
Inverse 113 8.144 66 .006 445 21.478
Power .078 5.445 66 .023 6.718 -531

S .081 5.640 66 .021 —-.618 22.294
Exponential .075 5191 66 .026 1.557 -.012

“Dependent variable = minimum PRT; independent variable = yellow-onset speed.
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FIGURE 2 Preliminary linear regression analyses testing relation between &s,,, and V;: (a8) maximum (max.) deceleration rate versus speed
eastbound OH-4 at Boymel, (b) maximum deceleration rate versus speed eastbound OH-4 at Seward, (¢) maximum deceleration rate versus
speed eastbound US-50 at OH-128, (d) maximum deceleration rate versus speed westbound OH-14 at OH-44, and (e) maximum deceleration
rate versus speed.

deceleration rate (8s.qp) and the yellow-onset speed (V). Therefore,
this relationship can be represented in the following form:

Finally, the best-fit regression model takes into account the
relationships described by Equations 5 and 6. With the two rela-
tionships combined, the maximum deceleration rate (&gop) can
be modeled by a function of the yellow-onset speed (V) and the
85th percentile speed (Vgsi), which is expressed by the following
equation:

5 b
Ry .

0

where b, and b, are the coefficients.

Second, asimilar model fit analysis is performed to identify the
best-fit relationship between the maximum deceleration rate (&)
and the 85th percentile speed (Vesy,). Theresult findsthat theinverse
model representsthe best-fit relationship. Therefore, thisrelationship
can be expressed in the following form:

é’S&op (Vovvgsm) = @(p(bo + \;i) + bz +

0

b,

85th

()

where by, by, by, and b; are coefficients.
With a nonlinear regression analysis on the sample data that
include all theidentified most closely stopped vehicles at the four

ésop ~b,+ b, (6) study sites, the coefficients in Equation 7 can be determined.
Vesin Therefore, the final regression model of the maximum decelera-
tion rate is represented by the following equation with an R?

where b, and b; are coefficients. of .682:
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TABLE 4 Best Model Fit Analyses for Different DZ Contributing Factors

Model Summary
Parameter Estimates
Candidate Regression Sample
Study Site Models Size p-Value Constant Coefficient
Analysis of Best-Fit Relationship Between Maximum Acceleration Rate Versus Speed™®
OH-4 at Boymel Linear 715 52.606 23 .000 22.366 —.456
Logarithmic 745 61.491 23 .000 76.585 -19.692
Inverse .765¢ 68.3451 23 .000 -16.782 820.671
OH-14 at OH-44 Linear .802 24.306 8 .003 19.564 -.373
Logarithmic .835 30.413 8 .001 68.437 -17.287
Inverse .858¢ 36.335¢ 8 .001 -14.852 778.675
EB OH-4 at Seward Linear .805¢ 61.734¢ 17 .000 19.232 —.396
Logarithmic .798 590.251 17 .000 60.607 —15.555
Inverse .784 54.482 17 .000 -11.851 596.754
US-50 at OH-128 Linear .820 63.661 16 .000 22541 -390
Logarithmic .826 66.251 16 .000 77.405 -19.044
Inverse .826¢ 66.3051 16 .000 —-15.468 913.005
Analysis of Best-Fit Relationship Between Maximum Deceleration Rate Versus Speed™©
OH-4 at Boymel Linear .823 93.182 22 .000 1.880 227
Logarithmic .835 101.468 22 .000 -23.119 9.277
Inverse .840 104.782 22 .000 20.502 —-370.017
Power .844 108.137 22 .000 478 .849
S .852¢ 115.216¢ 22 .000 3.256 —33.941
Exponential .828 96.397 22 .000 4.718 .021
OH-14 at OH-44 Linear 492 7.749 10 .024 2.323 .206
Logarithmic .505 8.164 10 021 -23.929 9.360
Inverse 514 8.470 10 .020 21.042 —415.250
Power .538 9.332 10 .016 431 .863
S .553¢ 9.893¢ 10 .014 3.307 —-38.437
Exponential .520 8.675 10 .019 4.862 .019
EB OH-4 at Seward Linear 717 43.016 19 .000 .288 .289
Logarithmic 728 45575 19 .000 —-31.969 11.910
Inverse 731 46.110 19 .000 24.044 —477.851
Power 734 46.816 19 .000 .283 1.010
S 742¢ 48.980¢ 19 .000 3.496 —-40.718
Exponential 716 42.807 19 .000 4.393 .024
US-50 at OH-128 Linear .623 21.482 15 .000 —2.799 297
Logarithmic .618 21.040 15 .001 —42.027 13.837
Inverse .611 20.396 15 .001 24.910 —637.913
Power .659 25.069 15 .000 .095 1.236
S .654 24.539 15 .000 3.629 -57.103
Exponential .661¢ 25.305¢ 15 .000 3.173 .026

2Dependent variable = maximum accel eration rate.
PIndependent variable = yellow-onset speed.
‘Dependent variable = maximum decel eration rate.
“Indicates the highest R? or F value in the group.

)-9722+f§5§3 ®)

85th

3 —36.099
As0p (Vo ) Vssm) = e><p(3.379 "

0

ANALYSIS OF MAXIMUM ACCELERATION RATE
Preparation of Data Samples

First, the PRT for running and the acceleration rate of each yel-
low light running vehicle needs to be obtained. PRT for running
is difficult to measure accurately with the video-capture-based
techniques applied in this study. However, on the basis of the
assumption that drivers use the same PRT for making a go deci-
sion compared with making astop decision in responseto the yel-

low indication, in this paper the PRT for running is considered the
same as the PRT for stopping. Asfor the acceleration rate, it can
be derived and calculated from the trajectory data. The following

equation represents that calculation:

un

where

C2(X, =V, - t)
(t - 6Run)2

aru, = acceleration rate (ft/s%),

Orun = driver’ s PRT for running (s).

t = time interval between the onset of yellow and the instant
when the vehicle passes the stop line (s), and
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Second, the observed yellow-onset trgjectories of al qualified
yellow light running vehicles at the four study sites are plotted on
the four coordinate systems, asillustrated by Figures 1e, 1f, 1g, and
1h. Thevertical axisrepresentsvehicle speed at the onset of yellow,
and the horizontal axis represents vehicle yellow-onset distance
from stop line.

Third, vehiclesthat have thefarthest running distance at different
speeds are identified at the four study sites; they are the circled yel-
low light running vehicles shownin Figures 1le, 1f, 1g, and 1h. These
identified vehicles constitute the samplefor the analysis. The selec-
tion of these vehicles is in accordance with the definition of X,
which is the maximum yellow light running distance that a vehicle
could make at a specific speed. Therefore, the acceleration rate of
each selected sampl e reflects the maximum accel eration rate (8gun)-
When &g, is derived for each selected sample, 8, is used instead
inthe calculation of &, because S, isassumed to be equal to & ggp-

2 2 21.478
Brun (Vo) = BSmp (Vo) =0445+ (10
0
5
= 10 y=-0.3924x +19.634
[P, & R?=0.7004
9% ° >
[T ]
SE , oS
<e, i
. ® ,
sEo - . - 20, T
b= 225 30 35 40 45 E’M&R
b 4
X: Speed (mph)

(a)
g 10
:ﬁ 5 <& y =-0.3903x + 22.541
1 = R2=0.8197
D% s T~ ’
SE. N
<g, ey
% ,® 40 45 50 55 B o
5 -

X: Speed (mph)
©
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Maximum Acceleration Rate Versus Speed
and Other Factors

Similar to the analysis of the maximum deceleration rate, linear
regression analysisisused preliminarily to test how theyellow-onset
speed and the maximum acceleration rate are potentially related.
Figure 3 shows the results of thisregression analysis.

According to Figures 3a, 3b, 3c, and 3d, al thelinear models have
moderate to high R? values and a negative slope, which means the
maximum accel eration rate tends to decrease as speed increases. The
reasonisthat driversdo not need to use ahigh acceleration rateto pass
through the intersection when they aretraveling at ahigh speed. Some
maximum accel eration rates are negativein Figures 3a, 3b, 3c, and 3d
ininstancesin which the traveling speed of the vehicleis higher than
the 85th percentile speed. It reveals that when drivers are going
through the intersection at arelatively high speed, they will probably
releasethe gaspedd, or dightly apply the brakethrough cautiousness.

Figure 3e shows a comparison of the linear regression models
representing the relationship between the maximum acceleration

S 10
:ﬁ 8 < y=-0.3962x +19.232

— R?=0.8045
3% o S~
3E | o ™G
< % 2 N
g% . . . <§>\ :
2 % 30 35 40 5 O % 55
g -

X: Speed (mph)
(b)

S 10
- 8 y=-0.3727x+19.564
O~ R2=0.802
L 6 S
3E 4 o~
2 2 2 \NQ
» § 0 : .<> " .
S L3 35 40 45 0 T~ 4
5= -4

X: Speed (mph)
@)

---85th Speed=44.51 mph; Yellow=4.5s |__

= - 85th Speed=47.39 mph; Yellow=4.0s

- 85th Speed=51.69 mph; Yellow=4.0s |~
——85th Speed=58.30 mph; Yellow=5.0s

26 30

Maximum Acceleration
Rate (ft/s?)

Speed (mph)

FIGURE 3 Preliminary linear regression analyses testing relation between &g,, and V,: (8) maximum acceleration rate versus speed at
eastbound OH-4 at Boymel (yellow duration = 4.0 s; 85th percentile speed = 47.39 mph), (b) maximum acceleration rate versus speed at
eastbound OH-4 at Seward (yellow duration = 4.5 s; 85th percentile speed = 44.51 mph), (c) maximum acceleration rate versus speed at
eastbound US-50 at OH-128 (yellow duration = 5.0 s; 85th percentile speed = 58.30 mph), (@) maximum acceleration rate versus speed at
eastbound OH-14 at OH-44 (yellow duration = 4.0 s; 85th percentile speed 51.69 mph), and (e) maximum acceleration rate versus speed.
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rate and speed for the four study sites. The four regression
lines are sequenced down to up in an increasing order of the 85th
percentile speed. This result means that under the same speed
condition, the higher the 85th percentile speed of the intersection
approach is, the greater the maximum acceleration rate will be.
This finding should be the result of drivers’ tendency to be more
aggressive at higher speed intersectionsthan at lower speed inter-
sections. As for the duration of yellow time, the four regression
lines are sequenced down to up in neither a decreasing order nor
anincreasing order of the duration of yellow time. These findings
are supported by results of the statistical tests summarized in
Table 2.

Thetwo analysesin the acceleration rate section of Table 2 are
done to test whether the 85th percentile speed or the duration of
yellow time has a significant effect on the maximum accel eration
rate. Resultsindicate that for both models, yellow-onset speed is
a significant factor affecting the maximum acceleration rate at
the significance level of .000, or confidence level of 99.9%. The
p-value for the 85th percentile speed is .000, which indicates
that the 85th percentile speed is a statistically significant fact that
affects the maximum acceleration rate at the confidence level of
99.9%. And its positive coefficient has proved that the maximum
acceleration rate increases as the 85th percentile speed increases.
As for the duration of yellow time, the p-value is also .000, and
the slopeis positive. Statistically the meaning is that the duration
of yellow time also has a significant effect on the maximum accel-
eration rate. And the positive slope means that the longer the yel-
low time is, the larger the maximum acceleration rate will be.
However, the positive slopeis contributed mainly by the big differ-
ence in the maximum acceleration rate between 5.0-s yellow time
and 4.0-s/4.5-syellow time. According to Figure 3e, theregression
line representing the 4.5-s yellow time is located even lower than
the regression lines representing the yellow time of 4.0 s. This
result is a conflict with the positive slope.

Therefore, it can be concluded that in addition to the yell ow-onset
speed, only the 85th percentile speed is an actually significant fac-
tor affecting the maximum accel eration rate. To determine the best-
fit model of the maximum acceleration rate, two steps are needed
because there are two independent variables (i.e., speed and 85th
percentile speed).

First, a set of model fit tests is performed with the maximum
acceleration rate as the dependent variable and the yellow-onset
speed as the independent variable. Samplesinvolved in each model
fit test include all identified vehicles with the farthest running dis-
tances at this particular study site. Results of the model fit tests are
summarized in Table 4.

In Table 4, there are only three candidate regression models
because only these three models can have negative dependent
variable values. The inverse model is shown to be the best-fit
model that best describes the relationship between the maximum
acceleration rate (ag,,) and the yellow-onset speed (V,) becauseit
has the highest R? value and the highest F value at three of the four
study sites. Therefore, the relationship can be represented in the
following form:

B by ap
0

where b, and b, are coefficients.
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Second, similar modél fit analysisisperformed toidentify the best-
fit relationship between the maximum acceleration rate (&g,,) and
the 85th percentile speed (Vgsm). The result identifies the linear
model to be the best-fit model. Therefore, the relationship can be
represented in the following form:

éRun - bz * Vgsin + bs 12

where b, and b; are the coefficients.

Finally, the best-fit regression model takes into account both
relationships described by Equations 11 and 12. By combining the
two relationships, thefinal regression model isafunction of theyel-
low-onset speed (V,) and the 85th percentile speed (Vgsy,), which is
expressed by the following equation:

éRun (Vo ’ VSSth) = bo + \% + bz * Vasin 13

0

where by, by, and b, are coefficients.

By performing anonlinear regression analysison the sample data
that include all identified vehicleswith the farther running distances
at the four study sites, the coefficients in Equation 13 are deter-
mined. Therefore, thefinal regression model of the maximum accel-
eration rate is represented by the following equation with an R?
value of .775:

“ 760.258
Arn (Vo ’ V85th) =-27.91+

+0.266 - Vg, (14)

0

CONCLUSIONS

Results of the statistical analyses conducted on theyellow phasetra-
jectory data have proved the dynamic features of the contributing
factorsfor Type | DZ and option zone. The highlights of the results
are summarized as follows:

e Theminimum PRT issignificantly affected by speed. Mathemat-
ically, PRT isafunction of speed described by theinversemodel. The
minimum PRT decreases as the speed increases.

e Themaximum decel eration rateissignificantly affected by speed
and the 85th percentile speed of the intersection approach. Mathemat-
icaly, the maximum deceleration rate is described by the summation
of an Smodel of speed and aninverse model of the 85th percentile
speed. The maximum deceleration rate increases as the speed
increases. And under the same speed condition, the higher the 85th per-
centile speed of the intersection approach, the smaller the maximum
deceleration rate will be.

e Themaximum acceleration rateisalso significantly affected by
both speed and 85th percentile speed of the intersection approach.
Mathematically, the rate is represented by the summation of an
inverse model of speed and alinear model of the 85th percentile
speed. The maximum acceleration rate decreases as the speed
increases. And under the same speed condition, the higher the 85th
percentile speed of theintersection approach, thelarger the maximum
acceleration rate will be.

On the basis of these new findings, the final modified GHM
model for dynamic DZ is determined by removing the insignificant
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Yellow Time Duration = 4.5s and Corresponding 85th Percentile Speed = 47.7 mph

70
Dynamic X, - (Dynamic maximum accelertion rate and minimum PRT)
65 r Dynamic X;. - (Dynamic maximum deceleration rate and minimum PRT)
60 r \ .
55 r
=
a 50
E
T 45|
@
o
40 r
3% r
30 | " 1>
o5 | Traditional X; - (Constant minimum PRT = 1 5, and maximum acceleration rate = 16-0.213V;)
Traditional X.- (Constant maximum deceleration rate = 10 ft/s?, and minimum PRT=1s)
20 ere bbb b b b b b b bbb b bbb bbby
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Distance from Stop Line (ft)

FIGURE 4 Comparison between traditional and dynamic DZs.

factorsfrom Equations 1 and 2 and is represented by the following
equations:

- V2
X (Vo Vi, ) =V V) +——2—— 1
c( o Bsm) Ossmp( 0)+2'asop(V0'Vssm) @
1.
Xo (Vo’ T, Vasm) = VoT + Ea‘Run (Vo ' V85th) : [T - 8Run (Vo )]2 (16)

With incorporation of the regression equations of &gqp, 8run, Sgop,
and &, Equations 15 and 16 are therefore updated as follows:

X, (Vo ' V85th) =V (0'445+ wj
0
+ Vs
2. [exp(3.379+ _36'099] -9.722+ 429'692}
0 85th
(17
760.258

Xo(Vo, T Vi) = VpT + %(—27.91+ +0.266 - vgsm)

0

. [r - (o.445+ 21\'/478 H (18)

0

One significant application or implementation of the calibrated
dynamic DZ model is updating the DZ table, which was originally
established on the basis of the traditional DZ model. Typically, the
traditional DZ table assumes constant minimum PRT and maximum
deceleration of 1 sand 10 ft/s?, respectively, suggested by ITE. The
maximum acceleration rate is assumed to be computed with the
following equation:

4., =16.0-0.213x V, (19)

Figure 4 shows the comparison between the traditional and
dynamic DZs with a 4.5-s yellow time setting and the correspond-
ing 47.7-mph 85th percentile speed asan example. At higher speeds,
the traditional X. tends to be much farther from the stop line when
compared with the dynamic X., and the traditional X, tends to be
much farther from the stop line when compared with the dynamic
Xo. According to the lines representing the traditional X, and X, the
Type | DZ forms when the speed is higher than 53 mph. However,
the option zone always exists from 30 mph through 60 mph accord-
ing to thelinesrepresenting the dynamic X, and X,. The dynamic DZ
model was calibrated with field-observed data, indicating that the
traditional DZ model fails to describe real-world driving behavior.
In essence, the reason is that it is difficult to reflect the dynamic
features of the DZ with the traditional model. Therefore, the new
dynamic model has proved to be capable of providing atheoretical
base to update the existing DZ tables as ones that are dynamic with
theidentified characteristics of the contributing factors.
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