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The previous studies conducted by the authors have raised the dis-
cussion that values of the contributing factors of Type I DZ (i.e.,
âStop, âRun, δ̂Stop and δ̂Run) might be dynamic with different approach
speeds, and the results have also proved that dynamic (22, 23). How-
ever, whether these contributing factors are related only to speed or
are also dynamic with other potential variables, such as the duration
of the yellow time and the 85th percentile speed of the intersection
approach, still needs to be further investigated. Therefore, this paper
is dedicated to analyzing the dynamic characteristics of the major
contributing factors for Type I DZ and option zone and their corre-
lation with speed, duration of yellow time, and 85th percentile speed
of the intersection approach.

DYNAMIC DZ MODEL

Under the assumption that âStop, âRun, δ̂Stop, and δ̂Run are functions of
speed (V0), duration of yellow time (τ) and 85th percentile speed
(V85th), the following dynamic DZ model, which modifies the origi-
nal GHM model by changing the constant factor values into dynamic
ones, is tentatively proposed.

where

V0 = vehicle’s approaching speed (ft/s),
Xc(V0, τ, V85th) = critical (minimum) stopping distance from stop

line at speed V0 and under yellow interval τ and
85th percentile speed V85th (ft),

X0(V0, τ, V85th) = maximum yellow light running distance from
stop line at speed V0 and under yellow interval
τ and 85th percentile speed V85th (ft),

δ̂Stop(V0, τ, V85th) = minimum PRT for stopping at speed V0 and
under yellow interval τ and 85th percentile
speed V85th (s),

âStop(V0, τ, V85th) = maximum deceleration rate for stopping at
speed V0 and under yellow interval τ and
85th percentile speed V85th (ft/s2),
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δ̂Run(V0, τ, V85th) = minimum PRT for yellow light running at
speed V0 and under yellow interval τ and
85th percentile speed V85th (s), and

âRun(V0, τ, V85th) = maximum acceleration rate for yellow light
running at speed V0 and under yellow interval τ
and 85th percentile speed V85th (ft/s2).

In the case in which Xc > X0, the Type I DZ is formed, and the road-
way segment between Xc and X0 is the Type I DZ. However, in the
case in which Xc < X0, the Type I DZ is eliminated, and the roadway
segment between X0 and Xc is the option zone.

The selection of parameters (i.e., V0, τ, V85th) in the models of âStop,
âRun, δ̂Stop, and δ̂Run is temporary. The final models will include only
the significant parameters based on the final results from the statis-
tical analyses. Also, the intersection width (W) and vehicle length
(L) are removed from the original GHM model. The reason is that
on the basis of field observations, when drivers perceive the yellow
indication, they do not consider whether they could clear the inter-
section completely during the yellow interval. Actually, their con-
cern is whether they could pass the stop line before the onset of the
red indication.

DATA COLLECTION

Four approaches of high-speed signalized intersections in Ohio
are selected as the study sites and are summarized in Table 1. All
the study sites are located in suburban areas. No DZ protection is
implemented and no advance detectors are installed. At each study
site, a high-definition digital video camera was placed on the top of
a van parked on the shoulder of the intersection approach to shoot
vehicle maneuvers during the yellow intervals. An attempt was
made to place the camera far enough to cover all possible yellow
light running distances. In total, 46-h video data were collected at
the four study sites, covering different periods of the day. The video
was then converted to AVI format with a frame rate of 30 frames per
second and a resolution of 1,280 pixels × 720 pixels.

The video-capture-based software VEVID was used to obtain time-
based trajectory data of vehicles during the yellow intervals (24).
Vehicles targeted for trajectory data extraction include all yellow light
running vehicles, all red light running vehicles, and vehicles that are
the first stopped (first-to-stop) vehicles in their lanes during the yellow
intervals. Only vehicles that go straight were targeted for data extrac-
tion. Although two of the study sites have a shared through and right-
turn lane, only those yellow intervals in which no right-turn vehicles

TABLE 1 Conditions of Study Sites and Data Collection

Condition OH-4 at Boymel OH-14 at OH-44 OH-4 at Seward US-50 at OH-128

Posted speed limit 50 mph 50 mph 50 mph 55 mph

85th percentile speed 47.4 mph 51.7 mph 44.5 mph 58.3 mph

Yellow time 4.0 s 4.0 s 4.5 s 5.0 s

Through lanes 2 dedicated 1 dedicated 2 dedicated 1 dedicated
1 shared 1 shared

Distance covered by camera 420 ft 460 ft 420 ft 480 ft

First-to-stop samples 150 92 158 74

Run-yellow samples 253 62 403 178

Run-red samples 25 22 18 10
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are involved are targeted for data extraction. The extracted trajectory
data include the following items:

• Vehicle’s speed at the onset of yellow indication,
• Vehicle’s distance from stop line at the onset of yellow 

indication,
• Time used by a running vehicle to reach the stop line calculated

from the onset of yellow, and
• ID of the video frame in which the brake light of a stopped

vehicle is illuminated.

The details about how to extract the trajectory data can be found
in previous studies (22, 23). Finally, trajectory data of 1,445 vehicles
(speed ≥ 30 mph) were extracted and collected. Table 1 provides the
detailed information about the four study sites and the number of data
samples at each study site.

In Table 1, the rows “first-to-stop samples,” “run-yellow samples,”
and “run-red samples” list the total number of observed vehicles that
first stopped in their lane during the yellow interval, ran yellow,
and ran red, respectively. According to Table 1, the posted speed
limit is either 50 mph or 55 mph at the four study sites. However,
various 85th percentile speeds were found, ranging from 47.4 mph
to 58.3 mph. The yellow time is also various at the four study sites,
including 4.0 s, 4.5 s, and 5.0 s. This variety of data provides ideal
samples for analyzing the effect of yellow time and 85th percentile
speed on the DZ contributing factors.

ANALYSIS OF MINIMUM PRT AND
MAXIMUM DECELERATION RATE

Preparation of Data Samples

First, the PRT and the deceleration rate of each sample vehicle need
to be derived and calculated from the trajectory data. The driver’s
PRT can be determined by the time interval between the onset of yel-
low indication and the instant in which the brake light of the target
vehicle is illuminated. Considering that all recorded stopped vehicles
are the first-to-stop vehicles in the lane and stop at the stop line, the
deceleration rate is therefore calculated with the following equation:

where

aStop = deceleration rate (ft/s2),
V0 = yellow-onset speed (ft/s),
X0 = yellow-onset distance from stop line (ft), and

δStop = driver’s PRT for stopping (s).

Second, the observed yellow-onset trajectories of all qualified first-
to-stop vehicles at the four study sites are plotted on four coordinate
systems, respectively, as illustrated by Figures 1a, 1b, 1c, and 1d. The
vertical axis represents the vehicles’ speed at the onset of yellow; the
horizontal axis represents the vehicles’ distance from the stop line at
the onset of yellow.

Third, vehicles that have the shortest stopping distance at differ-
ent speeds are identified at all four study sites, which are the circled
first-to-stop vehicles shown in Figures 1a, 1b, 1c, and 1d. These
identified vehicles constitute the sample for the analysis. The selec-
tion of these vehicles is in accordance with the definition of Xc,
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which is the minimum stopping distance that a stopped vehicle could
achieve at a specific speed. Therefore, the PRT and deceleration rate
of the selected samples reflect the minimum PRT (δ̂Stop) and maximum
deceleration rates (âStop), respectively.

Minimum PRT Versus Speed and Other Factors

Linear regression analyses and statistical tests are conducted to test
whether speed, duration of yellow time, and 85th percentile speed
are significant factors influencing the driver’s minimum PRT. The
samples involved in the analysis are all the identified closest stopped
vehicles as circled in Figures 1a, 1b, 1c, and 1d. Table 2 shows a
summary of the results of the statistical analysis.

The two linear regression analyses in Table 2 aim to test whether
the 85th percentile speed or duration of yellow time has a significant
effect on the minimum PRT. The dependent variable for both analy-
ses is minimum PRT. The independent variables for Analysis 1 are
yellow-onset speed and 85th percentile speed; the independent vari-
ables for Analysis 2 are yellow-onset speed and duration of yellow
time. T-tests are performed to test the significance level (p-value) of
the independent variables in both analyses. The results summarized
in Table 2 indicate that for both models, yellow-onset speed is a sig-
nificant factor affecting the minimum driver’s PRT at the signifi-
cance level of .007, or confidence level of 99.3%. And the negative
slope indicates that the higher the speed is, the shorter the minimum
PRT will be. However, the p-values for the 85th percentile speed
and the duration of yellow time are .369 and .349, respectively.
Those values indicate that the 85th percentile speed and the duration
of yellow time are not statistically significant factors that influence
the driver’s minimum PRT.

Therefore, it can be concluded that the yellow-onset speed is the
only significant factor that affects the driver’s minimum PRT in this
study scope. A model fit test is then performed to determine the best-
fit model describing the minimum PRT. The samples involved in the
model fit test include all identified closest stopped vehicles. Table 3
shows a summary of the result of the test.

In Table 3 each candidate regression model has an R2 and a p-value
obtained from the F test. A higher R2 implies that the minimum PRT
is better explained by the regression model; a lower p-value implies
a more significant effect on the minimum PRT by the yellow-onset
speed. Among all candidate models, the inverse regression model has
the relatively highest R2 of .113 and the lowest p-value of .006. Those
values reveal that the inverse model is the best-fit model that
describes the relationship between the minimum PRT and the yellow-
onset speed. Although the R2 is very low, the yellow-onset speed is
significant at the 99.4% confidence level. Therefore, on the basis of
the result of the inverse regression summarized in Table 3, minimum
PRT (δ̂Stop) can then be modeled by a function of yellow onset speed
(V0), which is presented by the following equation:

Maximum Deceleration Rate Versus
Speed and Other Factors

First, linear regression analyses are performed to preliminarily
look at the relationship between the maximum deceleration rate
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FIGURE 1 First-to-stop and yellow light running vehicles and identified samples for analysis: (a) first-to-stop vehicles at
eastbound OH-4 at Boymel, (b) first-to-stop vehicles at eastbound OH-4 at Seward, (c) first-to-stop vehicles at westbound 
OH-14 at OH-44, (d ) first-to-stop vehicles at eastbound US-50 at OH-128, (e) yellow light running vehicles at eastbound OH-4
at Boymel, ( f ) yellow light running vehicles at eastbound OH-4 at Seward, (g) yellow light running vehicles at eastbound US-50
at OH-128, and (h) yellow light running vehicles at westbound OH-14 at OH-44.
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and the yellow-onset speed. Figure 2 shows results of the regression
analysis.

According to Figures 2a, 2b, 2c, and 2d, all linear models have a
moderate to high R2 and a positive slope, which means the maximum
deceleration rate increases as speed increases.

The comparison of the linear regression models representing dif-
ferent study sites is shown in Figure 2e. The four regression lines
are sequenced down to up in a decreasing order for 85th percentile
speed, revealing that under the same speed condition, the higher the
85th percentile speed of the approach is, the smaller the maximum

deceleration rate will be. This finding should be a result of drivers’
tendency to be more conservative at lower speed intersections than at
higher speed intersections. As for the duration of yellow time, it does
not seem to be a significant factor affecting the maximum decelera-
tion rate. The reason is that the four regression lines are sequenced
down to up in neither a decreasing order nor an increasing order of the
duration of yellow time. These findings are supported by results of
the statistical tests summarized in Table 2.

The purpose of the two analyses in the deceleration rate section
of Table 2 are to test whether the 85th percentile speed or the dura-
tion of yellow time has a significant effect on the maximum decel-
eration rate. Results indicate that for both analyses, yellow-onset
speed is a significant factor affecting the maximum deceleration rate
at the significance level of .000, or confidence level of 99.9%. The
p-value for the 85th percentile speed is also .000, which indicates
that the 85th percentile speed is a statistically significant factor
affecting the maximum deceleration rate at the confidence level of
99.9%. And the negative coefficient of the 85th percentile speed has
proved that the maximum deceleration rate decreases as the 85th
percentile speed increases. However, the p-value for the duration of
yellow time is .126, which is higher than .05. It reveals that the dura-
tion of yellow time is not statistically significant enough to affect the
maximum deceleration rate.

Therefore, it can be concluded that the yellow-onset speed and the
85th percentile speed are two significant factors affecting the maxi-
mum deceleration rate. Model fit analyses are then conducted to iden-
tify the best-fit model that describes the maximum deceleration rate.
Two steps are followed to determine the best-fit relationship between
each of the two independent variables (i.e., yellow-onset speed and
85th percentile speed) and the maximum deceleration rate.

First, a set of model fit tests is performed with the maximum
deceleration rate as the dependent variable and the yellow-onset
speed as the independent variable. For each study site, there is a
particular model fit test. Samples involved in each model fit test
include all the identified most closely stopped vehicles at this par-
ticular study site. Table 4 shows a summary of the results of the
model fit tests.

In Table 4, each candidate regression model has an R2, an F value,
and a p-value obtained from the F test. A higher R2 implies that
the maximum deceleration rate is better explained by the regression
model, whereas a higher F value implies a more significant effect on
the maximum deceleration rate by the yellow-onset speed. It can be
identified that the S regression model has the highest R2 value and
the highest F value at three of the four study sites. It is revealed that
the S model best describes the relationship between the maximum

TABLE 2 Statistical Test Results for Potential Variables Affecting
Different DZ Contributing Factors

Linear Regression Analysis B SE t-Statistic p-Value

Potential Variables Impacting Minimum PRTa

Analysis 1
Constant 1.246 .302 4.122 .000
Yellow-onset speed (mph) −.013 .005 −2.797 .007
85th percentile speed (mph) .006 .006 .905 .369

Analysis 2
Constant 1.174 .356 3.303 .002
Yellow-onset speed (mph) −.012 .004 −2.798 .007
Duration of yellow time (s) .073 .077 .944 .349

Potential Variables Impacting Maximum Deceleration Rateb

Analysis 1
Constant 8.997 1.400 6.425 .000
Yellow-onset speed (mph) .249 .022 11.262 .000
85th percentile speed (mph) −.165 .030 −5.535 .000

Analysis 2
Constant 5.617 1.972 2.849 .006
Yellow-onset speed (mph) .206 .025 8.378 .000
Duration of yellow time (s) −.663 .427 −1.552 .126

Potential Variables Impacting Maximum Acceleration Ratec

Analysis 1
Constant 7.769 1.771 4.388 .000
Yellow-onset speed (mph) −.418 .030 −13.889 .000
85th percentile speed (mph) .275 .039 7.036 .000

Analysis 2
Constant 9.117 2.474 3.686 .000
Yellow-onset speed (mph) −.352 .033 −10.653 .000
Duration of yellow time (s) 2.164 .552 3.924 .000

NOTE: SE = standard error.
aDependent variable = minimum PRT; N = 66.
bDependent variable = maximum deceleration rate; N = 66.
cDependent variable = maximum acceleration rate; N = 64.

TABLE 3 Best Model Fit Analyses for Different DZ Contributing Factors: Analysis of Best-Fit
Relationship Between Minimum PRT and Speed

Candidate Regression
Model Summary Parameter Estimate

Modela R2 F Sample Size p-Value Constant Coefficient

Linear .100 7.109 66 .010 1.456 −.012

Logarithmic .107 7.654 66 .007 2.854 −.506

Inverse .113 8.144 66 .006 .445 21.478

Power .078 5.445 66 .023 6.718 −.531

S .081 5.640 66 .021 −.618 22.294

Exponential .075 5.191 66 .026 1.557 −.012

aDependent variable = minimum PRT; independent variable = yellow-onset speed.
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deceleration rate (âStop) and the yellow-onset speed (V0). Therefore,
this relationship can be represented in the following form:

where b0 and b1 are the coefficients.
Second, a similar model fit analysis is performed to identify the

best-fit relationship between the maximum deceleration rate (âStop)
and the 85th percentile speed (V85th). The result finds that the inverse
model represents the best-fit relationship. Therefore, this relationship
can be expressed in the following form:

where b2 and b3 are coefficients.
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Finally, the best-fit regression model takes into account the
relationships described by Equations 5 and 6. With the two rela-
tionships combined, the maximum deceleration rate (âStop) can 
be modeled by a function of the yellow-onset speed (V0) and the
85th percentile speed (V85th), which is expressed by the following
equation:

where b0, b1, b2, and b3 are coefficients.
With a nonlinear regression analysis on the sample data that

include all the identified most closely stopped vehicles at the four
study sites, the coefficients in Equation 7 can be determined.
Therefore, the final regression model of the maximum decelera-
tion rate is represented by the following equation with an R2

of .682:
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FIGURE 2 Preliminary linear regression analyses testing relation between âStop and V0: (a) maximum (max.) deceleration rate versus speed
eastbound OH-4 at Boymel, (b) maximum deceleration rate versus speed eastbound OH-4 at Seward, (c) maximum deceleration rate versus
speed eastbound US-50 at OH-128, (d ) maximum deceleration rate versus speed westbound OH-14 at OH-44, and (e) maximum deceleration
rate versus speed.
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ANALYSIS OF MAXIMUM ACCELERATION RATE

Preparation of Data Samples

First, the PRT for running and the acceleration rate of each yel-
low light running vehicle needs to be obtained. PRT for running
is difficult to measure accurately with the video-capture-based
techniques applied in this study. However, on the basis of the
assumption that drivers use the same PRT for making a go deci-
sion compared with making a stop decision in response to the yel-
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low indication, in this paper the PRT for running is considered the
same as the PRT for stopping. As for the acceleration rate, it can
be derived and calculated from the trajectory data. The following
equation represents that calculation:

where

aRun = acceleration rate (ft/s2),
t = time interval between the onset of yellow and the instant

when the vehicle passes the stop line (s), and
δRun = driver’s PRT for running (s).
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TABLE 4 Best Model Fit Analyses for Different DZ Contributing Factors

Model Summary

Candidate Regression Sample
Study Site Models R2 F Size p-Value Constant Coefficient

Analysis of Best-Fit Relationship Between Maximum Acceleration Rate Versus Speeda, b

OH-4 at Boymel Linear .715 52.606 23 .000 22.366 −.456
Logarithmic .745 61.491 23 .000 76.585 −19.692
Inverse .765d 68.345d 23 .000 −16.782 820.671

OH-14 at OH-44 Linear .802 24.306 8 .003 19.564 −.373
Logarithmic .835 30.413 8 .001 68.437 −17.287
Inverse .858d 36.335d 8 .001 −14.852 778.675

EB OH-4 at Seward Linear .805d 61.734d 17 .000 19.232 −.396
Logarithmic .798 59.251 17 .000 60.607 −15.555
Inverse .784 54.482 17 .000 −11.851 596.754

US-50 at OH-128 Linear .820 63.661 16 .000 22.541 −.390
Logarithmic .826 66.251 16 .000 77.405 −19.044
Inverse .826d 66.305d 16 .000 −15.468 913.005

Analysis of Best-Fit Relationship Between Maximum Deceleration Rate Versus Speedb, c

OH-4 at Boymel Linear .823 93.182 22 .000 1.880 .227
Logarithmic .835 101.468 22 .000 −23.119 9.277
Inverse .840 104.782 22 .000 20.502 −370.017
Power .844 108.137 22 .000 .478 .849
S .852d 115.216d 22 .000 3.256 −33.941
Exponential .828 96.397 22 .000 4.718 .021

OH-14 at OH-44 Linear .492 7.749 10 .024 2.323 .206
Logarithmic .505 8.164 10 .021 −23.929 9.360
Inverse .514 8.470 10 .020 21.042 −415.250
Power .538 9.332 10 .016 .431 .863
S .553d 9.893d 10 .014 3.307 −38.437
Exponential .520 8.675 10 .019 4.862 .019

EB OH-4 at Seward Linear .717 43.016 19 .000 .288 .289
Logarithmic .728 45.575 19 .000 −31.969 11.910
Inverse .731 46.110 19 .000 24.044 −477.851
Power .734 46.816 19 .000 .283 1.010
S .742d 48.980d 19 .000 3.496 −40.718
Exponential .716 42.807 19 .000 4.393 .024

US-50 at OH-128 Linear .623 21.482 15 .000 −2.799 .297
Logarithmic .618 21.040 15 .001 −42.027 13.837
Inverse .611 20.396 15 .001 24.910 −637.913
Power .659 25.069 15 .000 .095 1.236
S .654 24.539 15 .000 3.629 −57.103
Exponential .661d 25.305d 15 .000 3.173 .026

aDependent variable = maximum acceleration rate.
bIndependent variable = yellow-onset speed.
cDependent variable = maximum deceleration rate.
dIndicates the highest R2 or F value in the group.

Parameter Estimates



Second, the observed yellow-onset trajectories of all qualified
yellow light running vehicles at the four study sites are plotted on
the four coordinate systems, as illustrated by Figures 1e, 1f, 1g, and
1h. The vertical axis represents vehicle speed at the onset of yellow,
and the horizontal axis represents vehicle yellow-onset distance
from stop line.

Third, vehicles that have the farthest running distance at different
speeds are identified at the four study sites; they are the circled yel-
low light running vehicles shown in Figures 1e, 1f, 1g, and 1h. These
identified vehicles constitute the sample for the analysis. The selec-
tion of these vehicles is in accordance with the definition of X0,
which is the maximum yellow light running distance that a vehicle
could make at a specific speed. Therefore, the acceleration rate of
each selected sample reflects the maximum acceleration rate (âRun).
When âRun is derived for each selected sample, δ̂Stop is used instead
in the calculation of âRun because δ̂Run is assumed to be equal to δ̂Stop.
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Maximum Acceleration Rate Versus Speed
and Other Factors

Similar to the analysis of the maximum deceleration rate, linear
regression analysis is used preliminarily to test how the yellow-onset
speed and the maximum acceleration rate are potentially related.
Figure 3 shows the results of this regression analysis.

According to Figures 3a, 3b, 3c, and 3d, all the linear models have
moderate to high R2 values and a negative slope, which means the
maximum acceleration rate tends to decrease as speed increases. The
reason is that drivers do not need to use a high acceleration rate to pass
through the intersection when they are traveling at a high speed. Some
maximum acceleration rates are negative in Figures 3a, 3b, 3c, and 3d
in instances in which the traveling speed of the vehicle is higher than
the 85th percentile speed. It reveals that when drivers are going
through the intersection at a relatively high speed, they will probably
release the gas pedal, or slightly apply the brake through cautiousness.

Figure 3e shows a comparison of the linear regression models
representing the relationship between the maximum acceleration
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FIGURE 3 Preliminary linear regression analyses testing relation between âRun and V0: (a) maximum acceleration rate versus speed at
eastbound OH-4 at Boymel (yellow duration � 4.0 s; 85th percentile speed � 47.39 mph), (b) maximum acceleration rate versus speed at
eastbound OH-4 at Seward (yellow duration � 4.5 s; 85th percentile speed � 44.51 mph), (c) maximum acceleration rate versus speed at
eastbound US-50 at OH-128 (yellow duration � 5.0 s; 85th percentile speed � 58.30 mph), (d ) maximum acceleration rate versus speed at
eastbound OH-14 at OH-44 (yellow duration � 4.0 s; 85th percentile speed 51.69 mph), and (e) maximum acceleration rate versus speed.
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rate and speed for the four study sites. The four regression 
lines are sequenced down to up in an increasing order of the 85th
percentile speed. This result means that under the same speed
condition, the higher the 85th percentile speed of the intersection
approach is, the greater the maximum acceleration rate will be.
This finding should be the result of drivers’ tendency to be more
aggressive at higher speed intersections than at lower speed inter-
sections. As for the duration of yellow time, the four regression
lines are sequenced down to up in neither a decreasing order nor
an increasing order of the duration of yellow time. These findings
are supported by results of the statistical tests summarized in
Table 2.

The two analyses in the acceleration rate section of Table 2 are
done to test whether the 85th percentile speed or the duration of
yellow time has a significant effect on the maximum acceleration
rate. Results indicate that for both models, yellow-onset speed is
a significant factor affecting the maximum acceleration rate at 
the significance level of .000, or confidence level of 99.9%. The 
p-value for the 85th percentile speed is .000, which indicates 
that the 85th percentile speed is a statistically significant fact that
affects the maximum acceleration rate at the confidence level of
99.9%. And its positive coefficient has proved that the maximum
acceleration rate increases as the 85th percentile speed increases.
As for the duration of yellow time, the p-value is also .000, and
the slope is positive. Statistically the meaning is that the duration
of yellow time also has a significant effect on the maximum accel-
eration rate. And the positive slope means that the longer the yel-
low time is, the larger the maximum acceleration rate will be.
However, the positive slope is contributed mainly by the big differ-
ence in the maximum acceleration rate between 5.0-s yellow time
and 4.0-s/4.5-s yellow time. According to Figure 3e, the regression
line representing the 4.5-s yellow time is located even lower than
the regression lines representing the yellow time of 4.0 s. This
result is a conflict with the positive slope.

Therefore, it can be concluded that in addition to the yellow-onset
speed, only the 85th percentile speed is an actually significant fac-
tor affecting the maximum acceleration rate. To determine the best-
fit model of the maximum acceleration rate, two steps are needed
because there are two independent variables (i.e., speed and 85th
percentile speed).

First, a set of model fit tests is performed with the maximum
acceleration rate as the dependent variable and the yellow-onset
speed as the independent variable. Samples involved in each model
fit test include all identified vehicles with the farthest running dis-
tances at this particular study site. Results of the model fit tests are
summarized in Table 4.

In Table 4, there are only three candidate regression models
because only these three models can have negative dependent
variable values. The inverse model is shown to be the best-fit
model that best describes the relationship between the maximum
acceleration rate (âRun) and the yellow-onset speed (V0) because it
has the highest R2 value and the highest F value at three of the four
study sites. Therefore, the relationship can be represented in the
following form:

where b0 and b1 are coefficients.
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Second, similar model fit analysis is performed to identify the best-
fit relationship between the maximum acceleration rate (âRun) and
the 85th percentile speed (V85th). The result identifies the linear
model to be the best-fit model. Therefore, the relationship can be
represented in the following form:

where b2 and b3 are the coefficients.
Finally, the best-fit regression model takes into account both

relationships described by Equations 11 and 12. By combining the
two relationships, the final regression model is a function of the yel-
low-onset speed (V0) and the 85th percentile speed (V85th), which is
expressed by the following equation:

where b0, b1, and b2 are coefficients.
By performing a nonlinear regression analysis on the sample data

that include all identified vehicles with the farther running distances
at the four study sites, the coefficients in Equation 13 are deter-
mined. Therefore, the final regression model of the maximum accel-
eration rate is represented by the following equation with an R2

value of .775:

CONCLUSIONS

Results of the statistical analyses conducted on the yellow phase tra-
jectory data have proved the dynamic features of the contributing
factors for Type I DZ and option zone. The highlights of the results
are summarized as follows:

• The minimum PRT is significantly affected by speed. Mathemat-
ically, PRT is a function of speed described by the inverse model. The
minimum PRT decreases as the speed increases.

• The maximum deceleration rate is significantly affected by speed
and the 85th percentile speed of the intersection approach. Mathemat-
ically, the maximum deceleration rate is described by the summation
of an S model of speed and an inverse model of the 85th percentile
speed. The maximum deceleration rate increases as the speed
increases. And under the same speed condition, the higher the 85th per-
centile speed of the intersection approach, the smaller the maximum
deceleration rate will be.

• The maximum acceleration rate is also significantly affected by
both speed and 85th percentile speed of the intersection approach.
Mathematically, the rate is represented by the summation of an
inverse model of speed and a linear model of the 85th percentile
speed. The maximum acceleration rate decreases as the speed
increases. And under the same speed condition, the higher the 85th
percentile speed of the intersection approach, the larger the maximum
acceleration rate will be.

On the basis of these new findings, the final modified GHM
model for dynamic DZ is determined by removing the insignificant

ˆ , .
.

.a V V
V

VRun th t0 85
0

8527 91
760 258

0 266( ) = − + + i
hh ( )14

ˆ , ( )a V V b
b

V
b VRun th th0 85 0

1

0
2 85 13( ) = + + i

ˆ ( )a b V bRun th∼ i
2 85 3 12+
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factors from Equations 1 and 2 and is represented by the following
equations:

With incorporation of the regression equations of âStop, âRun, δ̂Stop,
and δ̂Run, Equations 15 and 16 are therefore updated as follows:

One significant application or implementation of the calibrated
dynamic DZ model is updating the DZ table, which was originally
established on the basis of the traditional DZ model. Typically, the
traditional DZ table assumes constant minimum PRT and maximum
deceleration of 1 s and 10 ft/s2, respectively, suggested by ITE. The
maximum acceleration rate is assumed to be computed with the
following equation:
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Figure 4 shows the comparison between the traditional and
dynamic DZs with a 4.5-s yellow time setting and the correspond-
ing 47.7-mph 85th percentile speed as an example. At higher speeds,
the traditional Xc tends to be much farther from the stop line when
compared with the dynamic Xc, and the traditional X0 tends to be
much farther from the stop line when compared with the dynamic
X0. According to the lines representing the traditional Xc and X0, the
Type I DZ forms when the speed is higher than 53 mph. However,
the option zone always exists from 30 mph through 60 mph accord-
ing to the lines representing the dynamic Xc and X0. The dynamic DZ
model was calibrated with field-observed data, indicating that the
traditional DZ model fails to describe real-world driving behavior.
In essence, the reason is that it is difficult to reflect the dynamic
features of the DZ with the traditional model. Therefore, the new
dynamic model has proved to be capable of providing a theoretical
base to update the existing DZ tables as ones that are dynamic with
the identified characteristics of the contributing factors.
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